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Problem Set 9 solution manual

Exercise. A9.1

a- Dodecahedron: vertices =20, edges=30 , faces=12 , and 3 edges emanate from each vertex.
Icosahedron: vertices =12, edges=30, faces=20 , and 5 edges emanate from each vertex.

b- For the dodecahedron:
Notice that the stabilizer of a vertex is a cyclic group of order 3, and hence we can deduce
that the order of the group Gd is equal to 3×number of vertices, i.e |Gd|=60. If we allow
reflections then the stabilizer of the vertex of a dodecahedron is isomorphic to S3, and hence
the number of elements would be 120.

For the icosahedron:
Similarly as above, one can notice that the stabilizer of a vertex is the cyclic group of order
5, hence |Gi|=60, and allowing reflections then the stabilizer of a vertex would be isomorphic
to D5, hence the number if elements would be 120.

c- For the icosahedron:( the stab of a vertex is computed in part (b) )
For the face we have the stabilizer is a cyclic group of order 3.
For the edge we have the stabilizer is a cyclic group of order 2.

For the dodecahedron :( the stab of a vertex is computed in part (b) )
For the face we have the stabilizer is a cyclic group of order 5.
For the edge we have the stabilizer is a cyclic group of order 2.

Now it is easy to check that those results are compatible with the number of elements in Gi
, and Gd computed in part (b).

d- To see that the two groups Gi, and Gd are isomorphic, we have to consider each vertex of the
icosahedron as a face of dodecahedron, and each face of the icosahedron as a vertex of the
dodecahedron.

As for seeing the isomorphism between Gd and A5, you can either use the action of Gi on the
5 squares that can be embedded inside the dodecahedron, or you can find a a subgroup H of
order 12 in Gd, and use the action of Gd on Gd/H.

Exercise. A9.2

For S5:
Since we know that f(ijk..)f−1 = (f(i)f(j)f(k)...), then it is easy to see that all the m-cycles

in S5 are conjugate. Similarly the f(ij...)(kl...)f−1 = (f(i)f(j)...)(f(k)f(l)...) , and hence all prod-
ucts of m-cycles by n-cycles in S5 are conjugate. Hence we have the following:
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x Cx |Cx| |Zx|
idS5 {id} 1 120

(ij), transposition { all transpositions } 10 12
(ijk) 3-cycle { all 3-cycles } 20 6

(ij)(kl) product of two { all products of two 15 8
disjoint transpositions disjoint transpositions }

(ijkl) 4-cycle {all 4-cycles} 30 4
(ijk)(lm) product of disjoint { all disjoint products of 20 6

transposition and 3-cycle transpositions with 3-cycles }
(ijklm), 5-cycle { all 5-cycles } 24 5

Lemma 1. If τ commutes with σ, then (fτ)σ(fτ)−1 = fσf−1.

Proof. (fτ)σ(fτ)−1 = (fτ)στ−1f−1 = f(τστ)f−1 = fττσf−1 = fσf−1.

Corollary 1. If ∃ τ (transposition) that commutes with σ then the conjugacy class of σ in A5 is
the same as the conjugacy class in S5.

Proof. It is easy to see that any element conjugate to σ in A5 is conjugate to σ is S5. Now suppose
σ′ is conjugate to σ in S5, then ∃ f ∈ S5 such that fσf−1 = σ, if f ∈ A5 then σ and σ′ are
conjugate in A5, if not ( i.e f /∈ A5) then fτσ1τf

−1 = σ2 and fτ is an element of A5, hence σis
conjugate to σ′ is A5.

So for A5 we have only 5 orbits. In A5 we have 3-cycles, product of disjoint transpositions, and
5-cycles.

For any 3-cycle we can find a transposition τ that commutes with it, and hence by above corol-
lary the conjugacy class for the 3-cycles is the same as in S5.

For the product of two disjoint transpositions, Notice that (ij) commutes with (ij)(kl) for dis-
tinct i, j, k, l, and hence their conjugacy class is the same as in S5.

For the 5-cycles they are not all conjugate. Let Cσ be the conjugacy class in S5, and C ′σ be the
conjugacy class in A5. Fix a transposition τ , it is easy to see that S5 = A5∪A5τ , and we can then
deduce that Cσ = C ′σ ∪C ′τστ−1 since for f ∈ S5 with fσf−1 either f ∈ A5 , and hence fσf−1 ∈ C ′σ
or f /∈ A5, then ∃ g ∈ A5 such that f = gτ , with fσf−1 = (gτ)σ(gτ)−1 , so fσf−1 ∈ C ′τστ−1 .

Next we find |C ′σ| = |A5|/|Z ′σ|, where Z ′σ = Zσ ∩ A5. But Z ′σ =< σ > since from above table
we have |Zσ| = 5, and we know that < σ >⊂ Z ′σ. Hence we deduce that |C ′σ| = 12, and similarly
|C ′τστ−1 |=12.

Hence we deduce that we have two conjugacy classes for the 5-cycles.

Exercise. A9.3

Consider the function : f : GLn(Zp) −→ Z∗p defined by f(g) = |g|.
It is easy to see that f is a surjective group homomorphism.
The kernel of f is equal to the subgroup SLn(Zp).
So we deduce that GLn(Zp)/SLn(Zp) ∼= Z∗p, hence |SLn(Zp)| = |GLn(ZP )|/|Z∗p| = (pn−1)(pn−

p)...(pn − pn−1)/(p− 1).
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Exercise. A9.4

Lemma 2. If L1, L2, and L3 are three different lines in the plane then ∃ v1 ∈ L1 , and v2 ∈ L2

such that v3 = v1 + v2 ∈ L3 and L1 = span{v1}, L2 = span{v2}, and L3 = span{v3}.
Proof. Suppose that L1 = span{u1}, L2 = span{u2}, and L3 = span{u3}, then u1, and u2 are
linearly independent, and hence u3 = iu1 + ju2 ( i, j both non-zero). Then we let v1 = iu1, and
v2 = ju3, and we get v3 = v1 + v2.

A one dimensional subspaces of R2 is the span of some vector (a, b). Let L1, L2, and L3, be
3 different lines in R2, hence we can find 3 vector v1, v2, and v3 such that span{vi} = Li, with
v3 = v1 + v2. Similarly for the three lines m1,m2, and m3, we can find 3 vectors w1, w2, w3 such
that w3 = w1 + w2, and mi = span{wi}.

Next we can find a matrix g ∈ GL(2,R) such that gv1 = w1, and gv2 = w2, where g is the
transition matrix from the basis {v1, v2} to {w1, w2}.

So we have gv3 = g(v1 + v2) = w1 + w2 = w3. So we get our result.

Exercise. A9.5

Let us consider first the L = span{u} , where u =
[

1
0

]
( Note that L = span{

[
a
0

]
} for

any a 6= 0).

The orbit of L is OL = {g.L | g ∈ B}. Let g =
[
a b
0 c

]
with a, c non-zero, then g.L =

span(gu) = span(
[
a
0

]
) = span(u) = L , so OL = {L}.

This orbit has one element whose stabilizer is B.

For any other line L such that L = span(v) , where v =
[
α
β

]
with α, β ∈ R, and β 6= 0, we

have g.L = span(gv) = span(
[
aα+ bβ
cβ

]
. Notice that for any vector

[
i
j

]
∈ R2 with j 6= 0,

we can choose g =

[
1 i−α

β

0 j
β

]
, then g.L = span(

[
i
j

]
). We deduce that OL is equal to all one

dimensional subspaces of R2 except the one spanned by
[

1
0

]
.

The stabilizer of L = span(v) where v =
[

0
1

]
is the set of diagonal matrices.

Now generalizing for the action of the group of upper triangular matrices B of GL(n,R).

We start by u =


α
0
:
0

 and L = span(u). The orbit of L is OL = {L} .

Next the we consider the vector v =


α1

α2

0
:
0

 where α1, α2 ∈ R with α2 6= 0 , and we let
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L = span(v), the orbit of L is equal to all the one dimensional subspace generated by vectors

w =


β1

β2

0
:
0

 where β1, β2 ∈ R with β2 6= 0.

We keep doing this and hence we get n different orbits, where the ith orbit is the set of the

lines spanned by a vector of the form



α1

α2

:
αi
0
:
0


, with αi 6= 0.

Section. 36

Exercise. 1
p = 3, and |G| = 12 = 22 × 3, hence the order of the Sylow 3-subgroup is 3.

Exercise. 2
p = 3, and |G| = 54 = 2× 33, hence the order of the Sylow 3-subgroup is 27.

Exercise. 3
p = 2, and |G| = 24 = 24 × 3, let s be the number of the Sylow 2-subgroups, we know from the
third Sylow theorem that s/24 ,and s ≡ 1 mod(2), the divisors of 24 are 1,2,3,4,6,8,12,24, but s
must be congruent to 1 mod(2), so our only choices are 1, and 3.

Exercise. 4
|G| = 255 = 3× 5× 17, following the same argument as in ex 3, the number of Sylow 3-subgroups
can be either 1 or 85, and the number if the Sylow 5-subgroups can either be 1 or 51.

Exercise. 11

GH{g ∈ G | gHg−1 = H}.

a- identity is in GH since eHe−1 = eHe = H.

b- GH is closed under multiplication. Let g, l ∈ GH , then gHg−1 = H, and lHl−1 = H, and
hence (gl)H(gl)−1 = g(lHl−1)g−1) = gHg−1 = H. So gl ∈ GH .

c- Let a ∈ GH then aHa−1 = H, but also H = (a−1a)H(a−1a) = a−1(aHa−1)a = a−1Ha,
hence a−1 ∈ Gh.

Hence GH is a subgroup of G.
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Exercise. 12

G has a unique Sylow p-subgroup called P . Let g ∈ G be any element gPg−1 is another Sylow
p-subgroup , hence gPg−1 = P , since P is unique, and hence all the conjugates of P are equal to
P , so P is normal. Then G has a non-trivial normal subgroup, so G is not simple.

Exercise. 13

|G| = 45 = 32 × 5.
G has a Sylow 3-subgroup of order 9, using the same argument used in number 3 we can deduce

that it is a unique subgroup, and hence by number 12 it is normal. So G has a normal subgroup of
order 9.
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