Math 241

Problem Set 9 solution manual

Exercise. A9.1

a- Dodecahedron: vertices $=20$, edges $=30$, faces $=12$, and 3 edges emanate from each vertex. Icosahedron: vertices $=12$, edges $=30$, faces $=20$, and 5 edges emanate from each vertex.
b- For the dodecahedron:
Notice that the stabilizer of a vertex is a cyclic group of order 3, and hence we can deduce that the order of the group G_{d} is equal to $3 \times$ number of vertices, i.e $\left|G_{d}\right|=60$. If we allow reflections then the stabilizer of the vertex of a dodecahedron is isomorphic to S_{3}, and hence the number of elements would be 120 .

For the icosahedron:
Similarly as above, one can notice that the stabilizer of a vertex is the cyclic group of order 5 , hence $\left|G_{i}\right|=60$, and allowing reflections then the stabilizer of a vertex would be isomorphic to D_{5}, hence the number if elements would be 120 .
c- For the icosahedron:(the stab of a vertex is computed in part (b))
For the face we have the stabilizer is a cyclic group of order 3 .
For the edge we have the stabilizer is a cyclic group of order 2 .

For the dodecahedron : (the stab of a vertex is computed in part (b))
For the face we have the stabilizer is a cyclic group of order 5 .
For the edge we have the stabilizer is a cyclic group of order 2.

Now it is easy to check that those results are compatible with the number of elements in G_{i} , and G_{d} computed in part (b).
d- To see that the two groups G_{i}, and G_{d} are isomorphic, we have to consider each vertex of the icosahedron as a face of dodecahedron, and each face of the icosahedron as a vertex of the dodecahedron.
As for seeing the isomorphism between G_{d} and A_{5}, you can either use the action of G_{i} on the 5 squares that can be embedded inside the dodecahedron, or you can find a a subgroup H of order 12 in G_{d}, and use the action of G_{d} on G_{d} / H.

Exercise. A9.2

For S_{5} :
Since we know that $f(i j k ..) f^{-1}=(f(i) f(j) f(k) \ldots)$, then it is easy to see that all the m-cycles in S_{5} are conjugate. Similarly the $f(i j \ldots)(k l \ldots) f^{-1}=(f(i) f(j) \ldots)(f(k) f(l) \ldots)$, and hence all products of m-cycles by n-cycles in S_{5} are conjugate. Hence we have the following:

x	C_{x}	$\left\|C_{x}\right\|$	$\left\|Z_{x}\right\|$
$i d_{S_{5}}$	$\{i d\}$	1	120
$(i j)$, transposition	$\{$ all transpositions $\}$	10	12
$(i j k) 3$-cycle	$\{$ all 3-cycles \}	20	6
$(i j)(k l)$ product of two disjoint transpositions	$\{$ all products of two disjoint transpositions $\}$	15	8
$(i j k l) 4$-cycle	$\{$ all 4-cycles $\}$	30	4
$(i j k)(l m)$ product of disjoint transposition and 3-cycle	$\{$ all disjoint products of transpositions with 3-cycles $\}$	20	6
$(i j k l m), 5$-cycle	$\{$ all 5-cycles \}	24	5

Lemma 1. If τ commutes with σ, then $(f \tau) \sigma(f \tau)^{-1}=f \sigma f^{-1}$.
Proof. $(f \tau) \sigma(f \tau)^{-1}=(f \tau) \sigma \tau^{-1} f^{-1}=f(\tau \sigma \tau) f^{-1}=f \tau \tau \sigma f^{-1}=f \sigma f^{-1}$.
Corollary 1. If $\exists \tau$ (transposition) that commutes with σ then the conjugacy class of σ in A_{5} is the same as the conjugacy class in S_{5}.

Proof. It is easy to see that any element conjugate to σ in A_{5} is conjugate to σ is S_{5}. Now suppose σ^{\prime} is conjugate to σ in S_{5}, then $\exists f \in S_{5}$ such that $f \sigma f^{-1}=\sigma$, if $f \in A_{5}$ then σ and σ^{\prime} are conjugate in A_{5}, if not (i.e $f \notin A_{5}$) then $f \tau \sigma_{1} \tau f^{-1}=\sigma_{2}$ and $f \tau$ is an element of A_{5}, hence σ is conjugate to σ^{\prime} is A_{5}.

So for A_{5} we have only 5 orbits. In A_{5} we have 3 -cycles, product of disjoint transpositions, and 5-cycles.

For any 3-cycle we can find a transposition τ that commutes with it, and hence by above corollary the conjugacy class for the 3 -cycles is the same as in S_{5}.

For the product of two disjoint transpositions, Notice that $(i j)$ commutes with $(i j)(k l)$ for distinct i, j, k, l, and hence their conjugacy class is the same as in S_{5}.

For the 5 -cycles they are not all conjugate. Let C_{σ} be the conjugacy class in S_{5}, and C_{σ}^{\prime} be the conjugacy class in A_{5}. Fix a transposition τ, it is easy to see that $S_{5}=A_{5} \cup A_{5} \tau$, and we can then deduce that $C_{\sigma}=C_{\sigma}^{\prime} \cup C_{\tau \sigma \tau^{-1}}^{\prime}$ since for $f \in S_{5}$ with $f \sigma f^{-1}$ either $f \in A_{5}$, and hence $f \sigma f^{-1} \in C_{\sigma}^{\prime}$ or $f \notin A_{5}$, then $\exists g \in A_{5}$ such that $f=g \tau$, with $f \sigma f^{-1}=(g \tau) \sigma(g \tau)^{-1}$, so $f \sigma f^{-1} \in C_{\tau \sigma \tau^{-1}}^{\prime}$.

Next we find $\left|C_{\sigma}^{\prime}\right|=\left|A_{5}\right| /\left|Z_{\sigma}^{\prime}\right|$, where $Z_{\sigma}^{\prime}=Z_{\sigma} \cap A_{5}$. But $Z_{\sigma}^{\prime}=<\sigma>$ since from above table we have $\left|Z_{\sigma}\right|=5$, and we know that $<\sigma>\subset Z_{\sigma}^{\prime}$. Hence we deduce that $\left|C_{\sigma}^{\prime}\right|=12$, and similarly $\left|C_{\tau \sigma \tau^{-1}}^{\prime}\right|=12$.

Hence we deduce that we have two conjugacy classes for the 5-cycles.

Exercise. A9.3

Consider the function : $f: G L_{n}\left(\mathbb{Z}_{p}\right) \longrightarrow \mathbb{Z}_{p}^{*}$ defined by $f(g)=|g|$.
It is easy to see that f is a surjective group homomorphism.
The kernel of f is equal to the subgroup $S L_{n}\left(\mathbb{Z}_{p}\right)$.
So we deduce that $G L_{n}\left(\mathbb{Z}_{p}\right) / S L_{n}\left(\mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}^{*}$, hence $\left|S L_{n}\left(\mathbb{Z}_{p}\right)\right|=\left|G L_{n}\left(\mathbb{Z}_{P}\right)\right| /\left|\mathbb{Z}_{p}^{*}\right|=\left(p^{n}-1\right)\left(p^{n}-\right.$ $p) \ldots\left(p^{n}-p^{n-1}\right) /(p-1)$.

Exercise. A9.4

Lemma 2. If L_{1}, L_{2}, and L_{3} are three different lines in the plane then $\exists v_{1} \in L_{1}$, and $v_{2} \in L_{2}$ such that $v_{3}=v_{1}+v_{2} \in L_{3}$ and $L_{1}=\operatorname{span}\left\{v_{1}\right\}, L_{2}=\operatorname{span}\left\{v_{2}\right\}$, and $L_{3}=\operatorname{span}\left\{v_{3}\right\}$.
Proof. Suppose that $L_{1}=\operatorname{span}\left\{u_{1}\right\}, L_{2}=\operatorname{span}\left\{u_{2}\right\}$, and $L_{3}=\operatorname{span}\left\{u_{3}\right\}$, then u_{1}, and u_{2} are linearly independent, and hence $u_{3}=i u_{1}+j u_{2}(i, j$ both non-zero $)$. Then we let $v_{1}=i u_{1}$, and $v_{2}=j u_{3}$, and we get $v_{3}=v_{1}+v_{2}$.

A one dimensional subspaces of \mathbb{R}^{2} is the span of some vector (a, b). Let L_{1}, L_{2}, and L_{3}, be 3 different lines in \mathbb{R}^{2}, hence we can find 3 vector v_{1}, v_{2}, and v_{3} such that $\operatorname{span}\left\{v_{i}\right\}=L_{i}$, with $v_{3}=v_{1}+v_{2}$. Similarly for the three lines m_{1}, m_{2}, and m_{3}, we can find 3 vectors w_{1}, w_{2}, w_{3} such that $w_{3}=w_{1}+w_{2}$, and $m_{i}=\operatorname{span}\left\{w_{i}\right\}$.

Next we can find a matrix $g \in G L(2, \mathbb{R})$ such that $g v_{1}=w_{1}$, and $g v_{2}=w_{2}$, where g is the transition matrix from the basis $\left\{v_{1}, v_{2}\right\}$ to $\left\{w_{1}, w_{2}\right\}$.

So we have $g v_{3}=g\left(v_{1}+v_{2}\right)=w_{1}+w_{2}=w_{3}$. So we get our result.

Exercise. A9.5

Let us consider first the $L=\operatorname{span}\{u\}$, where $u=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ (Note that $L=\operatorname{span}\left\{\left[\begin{array}{l}a \\ 0\end{array}\right]\right\}$ for any $a \neq 0$).

The orbit of L is $O_{L}=\{g \cdot L \mid g \in B\}$. Let $g=\left[\begin{array}{cc}a & b \\ 0 & c\end{array}\right]$ with a, c non-zero, then $g . L=$ $\operatorname{span}(g u)=\operatorname{span}\left(\left[\begin{array}{l}a \\ 0\end{array}\right]\right)=\operatorname{span}(u)=L$, so $O_{L}=\{L\}$.

This orbit has one element whose stabilizer is B.
For any other line L such that $L=\operatorname{span}(v)$, where $v=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ with $\alpha, \beta \in \mathbb{R}$, and $\beta \neq 0$, we have $g \cdot L=\operatorname{span}(g v)=\operatorname{span}\left(\left[\begin{array}{c}a \alpha+b \beta \\ c \beta\end{array}\right]\right.$. Notice that for any vector $\left[\begin{array}{l}i \\ j\end{array}\right] \in \mathbb{R}^{2}$ with $j \neq 0$, we can choose $g=\left[\begin{array}{cc}1 & \frac{i-\alpha}{\beta} \\ 0 & \frac{j}{\beta}\end{array}\right]$, then $g \cdot L=\operatorname{span}\left(\left[\begin{array}{l}i \\ j\end{array}\right]\right.$). We deduce that O_{L} is equal to all one dimensional subspaces of \mathbb{R}^{2} except the one spanned by $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

The stabilizer of $L=\operatorname{span}(v)$ where $v=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is the set of diagonal matrices.
Now generalizing for the action of the group of upper triangular matrices B of $G L(n, \mathbb{R})$.
We start by $u=\left[\begin{array}{c}\alpha \\ 0 \\ \vdots \\ 0\end{array}\right]$ and $L=\operatorname{span}(u)$. The orbit of L is $O_{L}=\{L\}$.
Next the we consider the vector $v=\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ 0 \\ \vdots \\ 0\end{array}\right]$ where $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ with $\alpha_{2} \neq 0$, and we let
$L=\operatorname{span}(v)$, the orbit of L is equal to all the one dimensional subspace generated by vectors $w=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ 0 \\ \vdots \\ 0\end{array}\right]$ where $\beta_{1}, \beta_{2} \in \mathbb{R}$ with $\beta_{2} \neq 0$.

We keep doing this and hence we get n different orbits, where the i th orbit is the set of the lines spanned by a vector of the form $\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{i} \\ 0 \\ \vdots \\ 0\end{array}\right]$, with $\alpha_{i} \neq 0$.

Section. 36

Exercise. 1

$p=3$, and $|G|=12=2^{2} \times 3$, hence the order of the Sylow 3-subgroup is 3 .
Exercise. 2
$p=3$, and $|G|=54=2 \times 3^{3}$, hence the order of the Sylow 3 -subgroup is 27 .
Exercise. 3
$p=2$, and $|G|=24=2^{4} \times 3$, let s be the number of the Sylow 2 -subgroups, we know from the third Sylow theorem that $s / 24$,and $s \equiv 1 \bmod (2)$, the divisors of 24 are $1,2,3,4,6,8,12,24$, but s must be congruent to $1 \bmod (2)$, so our only choices are 1 , and 3 .

Exercise. 4

$|G|=255=3 \times 5 \times 17$, following the same argument as in ex 3 , the number of Sylow 3 -subgroups can be either 1 or 85 , and the number if the Sylow 5 -subgroups can either be 1 or 51 .

Exercise. 11

$$
G_{H}\left\{g \in G \mid g H g^{-1}=H\right\} .
$$

a- identity is in G_{H} since $e H e^{-1}=e H e=H$.
b- G_{H} is closed under multiplication. Let $g, l \in G_{H}$, then $g \mathrm{Hg}^{-1}=H$, and $l \mathrm{Hl}^{-1}=H$, and hence $\left.(g l) H(g l)^{-1}=g\left(l H l^{-1}\right) g^{-1}\right)=g H g^{-1}=H$. So $g l \in G_{H}$.
c- Let $a \in G_{H}$ then $a H a^{-1}=H$, but also $H=\left(a^{-1} a\right) H\left(a^{-1} a\right)=a^{-1}\left(a H a^{-1}\right) a=a^{-1} H a$, hence $a^{-1} \in G_{h}$.

Hence G_{H} is a subgroup of G.

Exercise. 12

G has a unique Sylow p-subgroup called P. Let $g \in G$ be any element $g P g^{-1}$ is another Sylow p-subgroup, hence $g \mathrm{Pg}^{-1}=P$, since P is unique, and hence all the conjugates of P are equal to P, so P is normal. Then G has a non-trivial normal subgroup, so G is not simple.

Exercise. 13
$|G|=45=3^{2} \times 5$.
G has a Sylow 3 -subgroup of order 9 , using the same argument used in number 3 we can deduce that it is a unique subgroup, and hence by number 12 it is normal. So G has a normal subgroup of order 9 .

