Math 241

Problem Set 9 solution manual

Exercise. A9.1

a- Dodecahedron: vertices =20, edges=30, faces=12, and 3 edges emanate from each vertex. Icosahedron: vertices =12, edges=30, faces=20, and 5 edges emanate from each vertex.

b- For the dodecahedron:

Notice that the stabilizer of a vertex is a cyclic group of order 3, and hence we can deduce that the order of the group G_d is equal to $3 \times$ number of vertices, i.e $|G_d|=60$. If we allow reflections then the stabilizer of the vertex of a dodecahedron is isomorphic to S_3 , and hence the number of elements would be 120.

For the icosahedron:

Similarly as above, one can notice that the stabilizer of a vertex is the cyclic group of order 5, hence $|G_i|=60$, and allowing reflections then the stabilizer of a vertex would be isomorphic to D_5 , hence the number if elements would be 120.

c- For the icosahedron:(the stab of a vertex is computed in part (b)) For the face we have the stabilizer is a cyclic group of order 3.For the edge we have the stabilizer is a cyclic group of order 2.

For the dodecahedron :(the stab of a vertex is computed in part (b)) For the face we have the stabilizer is a cyclic group of order 5. For the edge we have the stabilizer is a cyclic group of order 2.

Now it is easy to check that those results are compatible with the number of elements in G_i , and G_d computed in part (b).

d- To see that the two groups G_i , and G_d are isomorphic, we have to consider each vertex of the icosahedron as a face of dodecahedron, and each face of the icosahedron as a vertex of the dodecahedron.

As for seeing the isomorphism between G_d and A_5 , you can either use the action of G_i on the 5 squares that can be embedded inside the dodecahedron, or you can find a subgroup H of order 12 in G_d , and use the action of G_d on G_d/H .

Exercise. A9.2

For S_5 :

Since we know that $f(ijk..)f^{-1} = (f(i)f(j)f(k)...)$, then it is easy to see that all the m-cycles in S_5 are conjugate. Similarly the $f(ij...)(kl...)f^{-1} = (f(i)f(j)...)(f(k)f(l)...)$, and hence all products of *m*-cycles by *n*-cycles in S_5 are conjugate. Hence we have the following:

x	C_x	$ C_x $	$ Z_x $
id_{S_5}	$\{id\}$	1	120
(ij), transposition	$\{ all transpositions \}$	10	12
(<i>ijk</i>) 3-cycle	{ all 3-cycles }	20	6
(ij)(kl) product of two	{ all products of two	15	8
disjoint transpositions	disjoint transpositions $\}$		
(<i>ijkl</i>) 4-cycle	{all 4-cycles}	30	4
(ijk)(lm) product of disjoint	{ all disjoint products of	20	6
transposition and 3-cycle	transpositions with 3-cycles }		
(ijklm), 5-cycle	$\{ all 5-cycles \}$	24	5

Lemma 1. If τ commutes with σ , then $(f\tau)\sigma(f\tau)^{-1} = f\sigma f^{-1}$.

Proof. $(f\tau)\sigma(f\tau)^{-1} = (f\tau)\sigma\tau^{-1}f^{-1} = f(\tau\sigma\tau)f^{-1} = f\tau\tau\sigma f^{-1} = f\sigma f^{-1}.$

Corollary 1. If $\exists \tau$ (transposition) that commutes with σ then the conjugacy class of σ in A_5 is the same as the conjugacy class in S_5 .

Proof. It is easy to see that any element conjugate to σ in A_5 is conjugate to σ is S_5 . Now suppose σ' is conjugate to σ in S_5 , then $\exists f \in S_5$ such that $f\sigma f^{-1} = \sigma$, if $f \in A_5$ then σ and σ' are conjugate in A_5 , if not (i.e $f \notin A_5$) then $f\tau\sigma_1\tau f^{-1} = \sigma_2$ and $f\tau$ is an element of A_5 , hence σ is conjugate to σ' is A_5 .

So for A_5 we have only 5 orbits. In A_5 we have 3-cycles, product of disjoint transpositions, and 5-cycles.

For any 3-cycle we can find a transposition τ that commutes with it, and hence by above corollary the conjugacy class for the 3-cycles is the same as in S_5 .

For the product of two disjoint transpositions, Notice that (ij) commutes with (ij)(kl) for distinct i, j, k, l, and hence their conjugacy class is the same as in S_5 .

For the 5-cycles they are not all conjugate. Let C_{σ} be the conjugacy class in S_5 , and C'_{σ} be the conjugacy class in A_5 . Fix a transposition τ , it is easy to see that $S_5 = A_5 \cup A_5 \tau$, and we can then deduce that $C_{\sigma} = C'_{\sigma} \cup C'_{\tau \sigma \tau^{-1}}$ since for $f \in S_5$ with $f \sigma f^{-1}$ either $f \in A_5$, and hence $f \sigma f^{-1} \in C'_{\sigma}$ or $f \notin A_5$, then $\exists g \in A_5$ such that $f = g\tau$, with $f \sigma f^{-1} = (g\tau)\sigma(g\tau)^{-1}$, so $f \sigma f^{-1} \in C'_{\tau \sigma \tau^{-1}}$.

Next we find $|C'_{\sigma}| = |A_5|/|Z'_{\sigma}|$, where $Z'_{\sigma} = Z_{\sigma} \cap A_5$. But $Z'_{\sigma} = \langle \sigma \rangle$ since from above table we have $|Z_{\sigma}| = 5$, and we know that $\langle \sigma \rangle \subset Z'_{\sigma}$. Hence we deduce that $|C'_{\sigma}| = 12$, and similarly $|C'_{\tau\sigma\tau^{-1}}|=12$.

Hence we deduce that we have two conjugacy classes for the 5-cycles.

Exercise. A9.3

Consider the function : $f : GL_n(\mathbb{Z}_p) \longrightarrow \mathbb{Z}_p^*$ defined by f(g) = |g|.

It is easy to see that f is a surjective group homomorphism.

The kernel of f is equal to the subgroup $SL_n(\mathbb{Z}_p)$.

So we deduce that $GL_n(\mathbb{Z}_p)/SL_n(\mathbb{Z}_p) \cong \mathbb{Z}_p^*$, hence $|SL_n(\mathbb{Z}_p)| = |GL_n(\mathbb{Z}_P)|/|\mathbb{Z}_p^*| = (p^n - 1)(p^n - p)...(p^n - p^{n-1})/(p-1).$

Exercise. A9.4

Lemma 2. If L_1 , L_2 , and L_3 are three different lines in the plane then $\exists v_1 \in L_1$, and $v_2 \in L_2$ such that $v_3 = v_1 + v_2 \in L_3$ and $L_1 = span\{v_1\}, L_2 = span\{v_2\}, \text{ and } L_3 = span\{v_3\}.$

Proof. Suppose that $L_1 = span\{u_1\}$, $L_2 = span\{u_2\}$, and $L_3 = span\{u_3\}$, then u_1 , and u_2 are linearly independent, and hence $u_3 = iu_1 + ju_2$ (*i*, *j* both non-zero). Then we let $v_1 = iu_1$, and $v_2 = ju_3$, and we get $v_3 = v_1 + v_2$.

A one dimensional subspaces of \mathbb{R}^2 is the span of some vector (a, b). Let L_1, L_2 , and L_3 , be 3 different lines in \mathbb{R}^2 , hence we can find 3 vector v_1 , v_2 , and v_3 such that $span\{v_i\} = L_i$, with $v_3 = v_1 + v_2$. Similarly for the three lines m_1, m_2 , and m_3 , we can find 3 vectors w_1, w_2, w_3 such that $w_3 = w_1 + w_2$, and $m_i = span\{w_i\}$.

Next we can find a matrix $g \in GL(2,\mathbb{R})$ such that $gv_1 = w_1$, and $gv_2 = w_2$, where g is the transition matrix from the basis $\{v_1, v_2\}$ to $\{w_1, w_2\}$.

So we have $gv_3 = g(v_1 + v_2) = w_1 + w_2 = w_3$. So we get our result.

Exercise. A9.5

Let us consider first the $L = span\{u\}$, where $u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (Note that $L = span\{\begin{bmatrix} a \\ 0 \end{bmatrix}\}$ for any $a \neq 0$).

The orbit of L is $O_L = \{g.L \mid g \in B\}$. Let $g = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ with a, c non-zero, then g.L = $span(gu) = span(\begin{bmatrix} a \\ 0 \end{bmatrix}) = span(u) = L$, so $O_L = \{L\}$.

This orbit has one element whose stabilizer is B.

For any other line L such that L = span(v), where $v = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ with $\alpha, \beta \in \mathbb{R}$, and $\beta \neq 0$, we have $g.L = span(gv) = span(\left[\begin{array}{c} a\alpha + b\beta \\ c\beta \end{array}\right]$. Notice that for any vector $\left[\begin{array}{c} i \\ j \end{array}\right] \in \mathbb{R}^2$ with $j \neq 0$, we can choose $g = \begin{bmatrix} 1 & \frac{i-\alpha}{\beta} \\ 0 & \frac{j}{\beta} \end{bmatrix}$, then $g.L = span(\begin{bmatrix} i \\ j \end{bmatrix})$. We deduce that O_L is equal to all one dimensional subspaces of \mathbb{R}^2 except the one spanned by $\begin{vmatrix} 1 \\ 0 \end{vmatrix}$.

The stabilizer of L = span(v) where $v = \begin{bmatrix} 0\\1 \end{bmatrix}$ is the set of diagonal matrices. Now generalizing for the action of the group of upper triangular matrices B of $GL(n, \mathbb{R})$. $\lceil \alpha \rceil$

We start by
$$u = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 and $L = span(u)$. The orbit of L is $O_L = \{L\}$.

Next the we consider the vector $v = \begin{bmatrix} \alpha_2 \\ 0 \\ \vdots \end{bmatrix}$ where $\alpha_1, \alpha_2 \in \mathbb{R}$ with $\alpha_2 \neq 0$, and we let

L = span(v), the orbit of L is equal to all the one dimensional subspace generated by vectors $w = \begin{bmatrix} \beta_1 \\ \beta_2 \\ 0 \\ \vdots \end{bmatrix} \text{ where } \beta_1, \beta_2 \in \mathbb{R} \text{ with } \beta_2 \neq 0.$

We keep doing this and hence we get n different orbits, where the *i*th orbit is the set of the

lines spanned by a vector of the form
$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_i \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
, with $\alpha_i \neq 0$.

Section. 36

Exercise. 1

p = 3, and $|G| = 12 = 2^2 \times 3$, hence the order of the Sylow 3-subgroup is 3.

Exercise. 2

p = 3, and $|G| = 54 = 2 \times 3^3$, hence the order of the Sylow 3-subgroup is 27.

Exercise. 3

p = 2, and $|G| = 24 = 2^4 \times 3$, let s be the number of the Sylow 2-subgroups, we know from the third Sylow theorem that s/24, and $s \equiv 1 \mod(2)$, the divisors of 24 are 1,2,3,4,6,8,12,24, but s must be congruent to 1 $\mod(2)$, so our only choices are 1, and 3.

Exercise. 4

 $|G| = 255 = 3 \times 5 \times 17$, following the same argument as in ex 3, the number of Sylow 3-subgroups can be either 1 or 85, and the number if the Sylow 5-subgroups can either be 1 or 51.

Exercise. 11

 $G_H\{g \in G \mid gHg^{-1} = H\}.$

- a- identity is in G_H since $eHe^{-1} = eHe = H$.
- b- G_H is closed under multiplication. Let $g, l \in G_H$, then $gHg^{-1} = H$, and $lHl^{-1} = H$, and hence $(gl)H(gl)^{-1} = g(lHl^{-1})g^{-1} = gHg^{-1} = H$. So $gl \in G_H$.
- c- Let $a \in G_H$ then $aHa^{-1} = H$, but also $H = (a^{-1}a)H(a^{-1}a) = a^{-1}(aHa^{-1})a = a^{-1}Ha$, hence $a^{-1} \in G_h$.

Hence G_H is a subgroup of G.

Exercise. 12

G has a unique Sylow *p*-subgroup called *P*. Let $g \in G$ be any element gPg^{-1} is another Sylow *p*-subgroup, hence $gPg^{-1} = P$, since *P* is unique, and hence all the conjugates of *P* are equal to *P*, so *P* is normal. Then *G* has a non-trivial normal subgroup, so *G* is not simple.

Exercise. 13

 $|G| = 45 = 3^2 \times 5.$

G has a Sylow 3-subgroup of order 9, using the same argument used in number 3 we can deduce that it is a unique subgroup, and hence by number 12 it is normal. So G has a normal subgroup of order 9.